Summary

France’s Flamanville 3 nuclear reactor, its most powerful at 1,600 MW, was connected to the grid on December 21 after 17 years of construction plagued by delays and budget overruns.

The European Pressurized Reactor (EPR), designed to boost nuclear energy post-Chernobyl, is 12 years behind schedule and cost €13.2 billion, quadruple initial estimates.

President Macron hailed the launch as a key step for low-carbon energy and energy security.

Nuclear power, which supplies 60% of France’s electricity, is central to Macron’s plan for a “nuclear renaissance.”

  • mosiacmango@lemm.ee
    link
    fedilink
    English
    arrow-up
    9
    ·
    edit-2
    3 days ago

    Nuclear plants are mostly concrete and steel.

    ???

    You realize the above is true for basically any building, right? That that’s a crazy metric to judge any maintenance effort by? Total weight of the building and then everything in it?

    Do datacenters not have replaceable parts because they are mainly concrete and steel? Sure, they may have 10,000 servers that all need to be fixed and replaced constantly but since a datacenter is mostly concrete and steel, it doesn’t matter because it’s not much by total mass of the datacenter? Same goes for airports, factories, on and on.

    I guess if you plonk thousands of maintenance heavy devices into a large enough building then weigh the whole structure, the percentage of the structure that has to be serviced goes down, making overall (by weight) maintenance go down. Airplanes need to be fixed? They weigh basically nothing compared to airports, so “tada!” no they dont!

    Skipping over your bizarre metric, solar cell recycling is hitting 95%. That is again, something that isn’t relevant with modern panels for 30-50+ years, as they will still be producing 70-80% of their rated power at that time. That’s easily enough power to just leave them in use.

    • Resonosity@lemmy.dbzer0.com
      link
      fedilink
      English
      arrow-up
      3
      ·
      2 days ago

      Lol and the commenter above you is forgetting about the aluminum of the PV module’s frame, as well as stainless steel used for the racking. Those things are super easy to recycle.

    • TheBlackLounge@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      5
      ·
      3 days ago

      Ehh, concrete is very polluting, and nuclear plants need a lot of it. It’s not gonna get recycled either. I thought this was obvious. Dunno how you thought that was a dunk.

      But we can keep building them. It’ll always be expensive, but we don’t need much rare material.

      I was hoping I’d see cobalt etc in your link, but still not then… For solar cells we need that 5% to be mined over and over. 50 years is nothing if you’re talking about renewables. Might as well not care about sustainability at all if you’re not talking another 5000 years.

      • Enkrod@feddit.org
        link
        fedilink
        English
        arrow-up
        1
        ·
        2 days ago

        Cobalt is more abundant in the earths crust than thorium or uranium by an order of magnitude.

        • TheBlackLounge@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          2 days ago

          And we need several orders of magnitude more of it per Wh. We’ll run out of sand to make cement to build reactors before we run out of uranium.